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Astronomy has been Transformed by Technology

Galileo (1564-1642) ASKAP telescope array (2011)

The ASKAP telescope will produce 1 GB/s of data. The
VAST project1 aims to develop a pipeline that will analyse this
data stream in real-time.

1http://www.physics.usyd.edu.au/sifa/vast/index.php/
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Transients and Time Series
The goal of VAST is to develop a pipeline to detect and
classify astronomical transient events in time series as early as
possible.

Figure: Real supernova time series data, in a couple of observing
frequences. A model has been fitted over each frequency dataset.

Any algorithms used in the pipeline must have excellent
precision, preferably few false negatives, and be scalable.
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Problem and Approach

My thesis addressed the transient classification component of
the VAST pipeline. Key components of the work were

I Framing the problem as one of time series classification

I Performing an extensive literature review across
application domains

I Developing an experimental framework with simulated
transients and distortions typical to astronomical data

I Developing a feature based supervised classification
scheme

I Using the framework to evaluate the classifier and to
characterize the difficulties of transient classification
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Research Questions

Through my approach I addressed the following research
questions:

I Is supervised learning appropriate for astronomical
transient classification?

I How do the various distortions, individually and
combined, impact classification accuracy?

I What features cope best with what distortions?

I Is the classifier suitable for use in the VAST pipeline?
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Simulated transients
Existing data is either not of sufficient quantity for machine
learning, not of the transient types of interest to VAST, or not
of the data quality comparable to ASKAP. Simulated transient
models were used, produced by Kitty Lo [3]
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Simulated Distortions and the Dataset
Using these models I produced simulations of telescope data
for a number of distortions at differing severities.
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Figure: Distortions applied to ESE light curves
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Background and Literature

Transient classification is a previously unexplored problem in
machine learning or astronomy so a broad literature review of
time series classification was performed:

Statistical models

I Gaussian processes [6]

I Hidden Markov Models

Distance measures

I Euclidean

I Dynamic time warping [8]

I Longest common
subsequence

Features and transformations

I Linear segmentation [2]

I Piecewise aggregrate
approximation

I Shapelets [9]

I Haar Wavelet Transforms [5]

I Lomb-Scargle periodograms [4]

I Statistical properties of flux
distributions [7]
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Classifier

Weka implementation of the Random Forest [1] supervised
classifier with the following features:

I Haar wavelet coefficients

I Lomb-Scargle periodogram2

I Statistical properties of flux distribution

I Statistical properties of linear segmentation3

I Shapelets

For those features with no footnote I did the implementation.

2http://www.astropython.org/blog/2010/9/

Question-period-finding-packages-in-python
3http://www.hackchina.com/en/cont/174005
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Experimental Method

I Assumes a transient has been detected in a sliding
window, passed to the classifier

I Dataset of 200 × 8 simulated transient classes

I Noise, missing data and a combination of both applied

I Cropping of time series to assess early classification

I Two experiments run for each distortion:
I equally distorted training and test data
I undistorted training and distorted test data

I 10-fold cross validation

I Results as F-Score and F-Score standard deviation across
cross folds
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Baseline results
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Figure: Classification performance as the percentage of each of the
test cases observed is reduced. Classification is nearly perfect from
100% to 25% observed data with F-Scores above 0.95.
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Missing data results
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Figure: F-Score under the missing data distortion. Classification
stays above 0.9 F-Score until 75% missing data when using
distorted training data. When using undistorted training data
performance is significantly lower.
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Noise results
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Figure: F-Score under the noise distortion. When using distorted
training data classification performance decreases steadily as noise
increases. When using undistorted training data classification
performance is much worse for the same amounts of noise.
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Combined distortion results
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Figure: Classification performance as the signal is cropped under
both noise and missing data distortions. Classification performance
when using data is below 0.8 F-Score for any amount of observed
data. With undistorted training data it is below 0.4 F-Score.
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Shapelet results
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Figure: Confusion matrices for the shapelet feature with an
F-Score of 0.57. The shapelet feature can classify some classes
(ESE, FSRSCVn) well.

The shapelet algorithm needs further work to give meaningful
results for the missing data and noise distortions.
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Analysis and Evaluation

I The Random Forest cannot classify accurately with the
shift in feature values when using undistorted training
data for any distortion.

I Signal clarity becomes an issue for noise after 1.0 and
missing data at 90%.

I Compounded distortions give classification performance
at 0.4 F-Score, not practical for the VAST pipeline

I The shapelet classification deserves further investigation
as an additional feature

I Haar wavelets are good for dealing with noise. Statistical
features are robust to missing data but are heavily
affected by noise. Spectral features are affected by
missing data.
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Future work

I Investigating additional features to add to the classifier
that will improve robustness to noise and missing data.

I Data proprocessing (smoothing, regression) to make the
test data closer to the training data and reduce
training/test feature value disparity.

I Modifying the shapelet algorithm to make it applicable to
distorted data.
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Conclusion

I Automated transient classification with the VAST pipeline
has great scientific potential for astronomers, but is a
difficult problem to solve.

I This research reveals two main difficulties in solving the
problem in the context of the VAST pipeline:

1. The lack of training data that is meaningful for incoming
data with varying levels of distortions

2. The compounded effects of noise and missing data on
signal quality

I Future work in preprocessing the test data and adding
additional features to improve classification under noise
will improve classification performance and may make this
approach suitable for VAST.
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Shapelets
Provides a potentially useful classification feature whose value
will change less than histogram or wavelet features as
distortions are introduced.
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Figure: Shapelet for an ESE light curve from the dataset. The
minimum Euclidean distance to a test light curve for the shapelet
is used as a feature.20/24



Wavelet transforms
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The coefficients of top 16 Haar wavelets and the top 5
strongest periodogram peak frequencies are used as features.
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Statistical features
Applies various statistical measures including Kurtosis and
Skew to histogram of z-normalised flux
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Linear segmentation
The same statistical measures are applied to a histogram
produced from a linear segmentation.
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Figure: Linear segmentation of a time series from my dataset, and
then for the same time series with 1.5 times its variance added as
gaussian noise.
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Classifier scalability

In the VAST pipeline classifier training is done offline. The
running time of classifying with an already trained Random
Forest is O(log n), where n is the number of features.

Lomb-Scargle periodogram O(L log L)

Haar wavelet transform O(L)

Linear segmentation O(L)

All statistical features O(L)

Where L is the length of the time series in datapoints.
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